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1 Introduction

We consider the general regularization framework for machine learning, where a risk (or loss)
function is minimized, subject to a regularization condition on the model parameter. For many
natural machine learning problems, either the loss function or the regularization condition can
be non-convex. For example, the loss function is non-convex for classification problems, and the
regularization condition is non-convex in problems with sparse parameters.

A major difficulty with nonconvex formulations is that the global optimal solution cannot be
efficiently computed, and the behavior of a local solution is hard to analyze. In practice, convex
relaxation (such as support vector machine for classification or L1 regularization for sparse learning)
has been adopted to remedy the problem. The choice of convex formulation makes the solution
unique and efficient to compute. Moreover, the solution is easy to analyze theoretically. That
is, it can be shown that the solution of the convex formulation approximately solves the original
problem under appropriate assumptions. However, for many practical problems, such simple convex
relaxation schemes can be sub-optimal.

In this research project, we consider a more general framework of multi-stage convex relaxation
methods, which remedies the above gap between theory and practice. The method is derived from
concave duality, and involves solving a sequence of convex relaxation problems, leading to better
and better approximations to the original nonconvex formulation. Since each stage is a convex op-
timization problem, the approach is computationally efficient. Moreover, using mathematical tools
from convex analysis, we can analyze the effectiveness of the resulting procedure. This research can
significantly improve the widely used convex relaxation methods in machine learning, by extending
the standard one-stage convex learning algorithms to more general and sophisticated multi-stage
convex learning algorithms that are both computationally efficient and theoretically superior.

2 Scientific Objectives of Research

The combination of regularization and risk minimization is essential in modern machine learning.
We shall first motivate this class of learning algorithms from supervised learning as follows. Consider
a set of input vectors x1, . . . ,xn ∈ Rd, with corresponding desired output variables y1, . . . , yn. The
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task of supervised learning is to estimate the functional relationship y ≈ f(x) between the input
x and the output variable y from the training examples {(x1, y1), . . . , (xn, yn)}. The quality of
prediction is often measured through a loss function φ(f(x), y). In this work, we are especially
interested in linear prediction model f(x) = wTx. As in boosting or kernel methods, nonlinearity
can be easily incorporated in our approach by including nonlinear features in x. Hence we shall
focus our description on linear models for simplicity. For linear models, we are mainly interested in
the scenario that d� n. That is, there are many more features than the number of samples. In this
case, an unconstrained empirical risk minimization is inadequate because the solution overfits the
data. The standard remedy for this problem is to impose a constraint on w to obtain a regularized
problem. This leads to the following regularized empirical risk minimization method:

ŵ = arg min
w∈Rd

[
n∑

i=1

φ(wTxi, yi) + λg(w)

]
, (1)

Supervised learning can be solved using general empirical risk minimization formulation in (1).
Both φ and g can be non-convex in application problems. The traditional approach is to use convex
relaxation to approximate it, leading to a single stage convex formulation. In the proposed work,
we try to extend this idea, by looking at a more general multi-stage convex relaxation method,
which leads to more accurate approximations.

We consider an optimization formulation more general than (1) as follows:

ŵ = arg min
w

R(w),

R(w) = R0(w) +
K∑
k=1

Rk(w), (2)

where R(w) is the general form of a regularized objective function. Moreover, for convenience,
we assume that R0(w) is convex in w, and each Rk(w) is non-convex. In the proposed work,
we shall employ convex/concave duality to derive convex relaxations of (2) that can be efficiently
solved. More generally, we will study computational procedures and develop statistical theory for
nonconvex formulations.

3 Technical Approach

We are specifically interested in sparse estimation problems, and try to understand the effectiveness
of convex methods versus nonconvex methods. Of special interests, we want to investigated the so-
called multi-stage convex relaxation approach described as follows. We consider a single nonconvex
component Rk(w) in (2), which we shall rewrite using concave duality. Let hk(w) : Rd → Ωk ⊂ Rdk

be a vector function with range Ωk. It may not be a one-to-one map. However, we assume that
there exists a function R̄k defined on Ωk so that we can express Rk(w) as

Rk(w) = R̄k(hk(w)).

Assume that we can find hk so that the function R̄k(uk) is concave on uk ∈ Ωk. Under this
assumption, we can rewrite the regularization function Rk(w) as:

Rk(w) = inf
vk∈Rdk

[
vT
k hk(w) +R∗k(vk)

]
(3)
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using concave duality. In this case, R∗k(vk) is the concave dual of R̄k(uk) given below

R∗k(vk) = inf
uk∈Ωk

[
−vT

k uk + R̄k(uk)
]
.

Moreover, it is well-known that the minimum of the right hand side of (3) is achieved at

v̂k = ∇uR̄k(u)|u=hk(w). (4)

This is a very general framework.
Using concave duality given in the previous section, we can derive a general convex relaxation

based procedure for solving (2).
Let hk(w) be a convex relaxation of Rk(w) that dominates Rk(w) (for example, it can be the

smallest convex upperbound (i.e., the inf over all convex upperbounds) of Rk(w)). A simple convex
relaxation of (1) becomes

ŵ = arg min
w∈Rd

[
R0(w) +

K∑
k=1

hk(w)Tvk

]
. (5)

This simple relaxation yields a solution that is different from the solution of (1). However, it is
possible to write Rk(w) using (3). Now, with this new representation, we can rewrite (1) as

[ŵ, v̂] = arg min
w,{vk}

[
R0(w) +

K∑
k=1

(hk(w)Tvk +R∗k(vk))

]
. (6)

This is clearly equivalent to (1) because of (3). If we can find a good approximation of v̂ = {v̂k}
that improves upon the initial value of v̂k = 1, then the above formulation can lead to a refined
convex problem in w that is a better convex relaxation than (5). Our numerical procedure exploits
the above fact, which tries to improve the estimation of vk over the initial choice of vk = 1 in (5)
using an iterative algorithm. This can be done using an alternating optimization procedure, which
repeatedly applies the following two steps:

• First we optimize w with v fixed: this is a convex problem in w with appropriately chosen
h(w).

• Second we optimize v with w fixed: although non-convex, it has a closed form solution that
is given by (4).

The general procedure is presented in Figure 1.

4 Progress Made & Results Obtained

I have made several major progresses during this research project. In particular, I studied the
theoretical properties of multi-stage convex relaxation for sparse recovery problems. The analysis
resulted in one paper in JMLR and one paper in the Bernoulli journal that analyzed multi-stage
convex relaxation for sparse regularization. These papers showed that in comparison to standard
convex relaxation with Lasso (L1 regularization), the multi-stage convex relaxation method can
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Initialize v̂ = 1
Repeat the following two steps until convergence:

• Let

ŵ = arg min
w

[
R0(w) +

K∑
k=1

hk(w)T v̂k

]
. (7)

• Let v̂k = ∇uR̄k(u)|u=hk(w) (k = 1, . . . ,K)

Figure 1: Multi-stage Convex Relaxation Method

recover sparse target more accurately by solving appropriate nonconvex objective functions with
sparse regularization. Moreover, the solutions can be obtained efficiently.

In sparse recovery, we observe a set of input vectors x1, . . . ,xn ∈ Rd, with corresponding desired
output variables y1, . . . , yn. In general, we may assume that there exists a target w̄ ∈ Rd such that

yi = w̄>xi + εi (i = 1, . . . , n), (8)

where εi are zero-mean independent random noises (but not necessarily identically distributed).
Moreover, we assume that the target vector w̄ is sparse. That is, there exists k̄ = ‖w̄‖0 is small.

Let y denote the vector of [yi] and X be the n × d matrix with each row a vector xi. We are
interested in recovering w̄ from noisy observations using the following sparse regression method:

ŵ = arg min
w

 1

n
‖Xw − y‖22 + λ

d∑
j=1

g(|wj |)

 , (9)

where g(|wj |) is a regularization function. Here we require that g′(u) is non-negative which means
we penalize larger u more significantly. Moreover, we assume u1−qg′(u) is a non-increasing func-
tion when u > 0, which means that [g(|w1|), . . . , g(|wd|)] is concave with respect to h(w) =
[|w1|q, . . . , |wd|q] for some q ≥ 1. It follows that (9) can be solved using the multi-stage convex
relaxation algorithm. The main difficulty is the nonconvexity of the formulation, which hasn’t
been successfully studied previously. We overcome this difficulty by introducing new techniques
that allow us to obtain strong theoretical results on the procedure. The results can be summarized
as follows: under standard conditions, multi-stage convex relaxation with appropriate nonconvex
regularizer g(w) gives a solution that recovers the support of the true target vector w̄ after no more
than O(log(s)) stages where s = ‖w̄‖0 is the sparsity of the true target.

In addition to these results on multi-stage convex relaxation, the PI has also looked at a number
of research directions during the past year. These studies have been fruitful, and resulted in many
conference/journal publications that are supported by the grant. Specifically, I extended funda-
mental theoretical investigation of regularization methods and studied new application problems.

• Together with collaborators in USC, we applied multi-stage convex relaxation to the prob-
lem of finding co-expressions in multiple biological networks. The work appeared in Plos
Computational Biology.

• I studied fundamental properties and limitations of convex L1 regularization problem, and
published results in the Annals of statistics.
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• Together with student Junzhou Huang, we investigated the structured sparsity problems and
published results in the Annals of statistics and in JMLR.

• Together with collaborator John Langford at Yahoo (who has moved to Microsoft), we applied
non-convex procedures to time-series prediction problems. The work appeared in ICML.

• I worked with Dr Wan at MSU on another application of nonconvex regularization to influenza
prediction, which resulted in several papers appeared in bioinformatics journals such as Plos
Computational Biology.

• I applied nonconvex analysis to image recognition problems, jointly with with Kai Yu’s group
at NEC. We successfully improved state of the art image classification algorithms. This re-
sulted in several conference publications in NIPS, ICML, and ECCV. Moreover, the technique
was used in the winning system of ImageNet large scale image classification Challenge in 2010
(http://www.image-net.org/challenges/LSVRC/2010).

• I investigated greedy algorithms for solving nonconvex formulations, resulted in several journal
papers in top machine learning, optimization, and engineering journals such as JMLR, SIAM
Journal on optimization, and IEEE Transaction on information theory.

• I studied matrix regularization problems for robust matrix reconstruction. This is a relatively
new problem with many applications that have drawn significant attention. We studied new
algorithms and analysis for this problem, together with postdoc Daniel Hsu and collaborator
Sham Kakade at U Penn. This resulted in a journal paper in IEEE Trans. Information
Theory. Moreover, we studied some new spectral algorithms for nonconvex formulations such
as the hidden Markov model problem, and presented new solutions; the resulting work was
published in NIPS and Journal of Computer and System Sciences.

• I worked with professor Cunhui Zhang at Rutgers on extending theoretical investigations of
multi-stage convex relaxation, which resulted in one paper on general nonconvex formulation
published in Statistical Science journal.

• I worked with a graduate student Dai Dong on model averaging methods that can greatly
improve prediction accuracy. This resulted in a paper published in the Annals of statistics.

5 Significance of Results & Impact on Science

My results on multi-stage convex relaxation was the first major result that demonstrated the
possibility to work with nonconvex optimization, and design a provably efficient algorithm to find a
local optimal solution superior to standard convex relaxation solution. Experiments demonstrated
the superiority of the multi-stage procedure as well. This important milestone rigorously shows
that the multi-stage convex relaxation is viable choice for nonconvex problems, which allows us to
expand into more general problems and applications. The general work supported by this research,
described in the previous section with publications listed in Section 6 have made significant impact
in the scientific community. To show this, I will list the Google scholar citations of some papers
resulted from this research grant:

• [Huang and Zhang, 2010] (combined with arxiv version): 120
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• [Yu, Zhang, and Gong, 2009]: 114

• [Zhang, 2009a]: 114

• [Huang, Zhang, and Metaxas, 2011] (combined with conference version): 113

• [Langford, Li, and Zhang, 2009a]: 106

• [Zhang, 2011a] (combined with conference version): 105

• [Zhou, Yu, Zhang, and Huang, 2010]: 75

• [Hsu, Kakade, and Zhang, 2012] (combined with conference version): 74

• [Zhang, 2009b]: 64

• [Zhang, 2010] (combined with early conference version): 44

6 Publications Resulted from Research

Animashree Anandkumar, Kamalika Chaudhuri, Daniel Hsu, Sham M. Kakade, Le Song, and Tong
Zhang. Spectral methods for learning multivariate latent tree structure. In NIPS’ 11, 2011.

Zhipeng Cai, Tong Zhang, and Xiu-Feng Wan. A computational framework for influenza antigenic
cartography. PLoS Comput Biol, 6(10):e1000949, 10 2010. doi: 10.1371/journal.pcbi.1000949.
URL http://dx.doi.org/10.1371%2Fjournal.pcbi.1000949.

Dong Dai, Philippe Rigollet, and Tong Zhang. Deviation optimal learning using greedy Q-
aggregation. Annals of Statistics, 40:1878–1905, 2012.

Daniel Hsu, Sham M. Kakade, John Langford, and Tong Zhang. Multi-label prediction via com-
pressed sensing. In NIPS’ 09, 2009.

Daniel Hsu, Sham Kakade, and Tong Zhang. Robust matrix decomposition with sparse corruptions.
IEEE Trans. Info. Th., 57:7221–7234, 2011.

Daniel Hsu, Sham M. Kakade, and Tong Zhang. A spectral algorithm for learning hidden markov
models. Journal of Computer and System Sciences, 78(5):1460–1480, 2012.

Junzhou Huang and Tong Zhang. The benefit of group sparsity. Annals of Statistics, 38:1978–2004,
2010.

Junzhou Huang, Tong Zhang, and Dimitris Metaxas. Learning with structured sparsity. Journal
of Machine Learning Research, 12:3371–3412, 2011.

John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated gradient. Journal
of Machine Learning Research, 10:777–801, 2009a.

John Langford, Ruslan Salakhutdinov, and Tong Zhang. Learning nonlinear dynamic models. In
ICML’ 09, 2009b.
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Wenyuan Li, Chun-Chi Liu, Tong Zhang, Haifeng Li, Michael S. Waterman, and Xianghong Jasmine
Zhou. Integrative analysis of many weighted co-expression networks using tensor computation.
PLoS Comput Biol, 7(6):e1001106, 06 2011. doi: 10.1371/journal.pcbi.1001106. URL http:

//dx.doi.org/10.1371%2Fjournal.pcbi.1001106.

Yuanqing Lin, Tong Zhang, Shenghuo Zhu, and Kai Yu. Deep coding network. In NIPS’ 10, 2010.

Shai Shalev-Shwartz, Nathan Srebro, and Tong Zhang. Trading accuracy for sparsity in optimiza-
tion problems with sparsity constraints. Siam Journal on Optimization, 20:2807–2832, 2010.

Lin Xiao and Tong Zhang. A proximal-gradient homotopy method for the L1-regularized least-
squares problem. In ICML’12, 2012.

Kai Yu and Tong Zhang. Improved local coordinate coding using local tangents. In ICML’ 10,
2010.

Kai Yu, Tong Zhang, and Yihong Gong. Nonlinear learning using local coordinate coding. In NIPS’
09, 2009.

Cunhui Zhang and Tong Zhang. A general theory of concave regularization for high dimensional
sparse estimation problems. Statistical Science, 27:576–593, 2012.

Tong Zhang. Some sharp performance bounds for least squares regression with L1 regularization.
Ann. Statist., 37(5A):2109–2144, 2009a. ISSN 0090-5364. doi: 10.1214/08-AOS659.

Tong Zhang. On the consistency of feature selection using greedy least squares regression. Journal
of Machine Learning Research, 10:555–568, 2009b.

Tong Zhang. Analysis of multi-stage convex relaxation for sparse regularization. Journal of Machine
Learning Research, 11:1087–1107, 2010.

Tong Zhang. Adaptive forward-backward greedy algorithm for learning sparse representations.
IEEE Transactions on Information Theory, 57:4689–4708, 2011a.

Tong Zhang. Sparse recovery with orthogonal matching pursuit under RIP. IEEE Transactions on
Information Theory, 57:6215 – 6221, 2011b.

Tong Zhang. Multistage convex relaxation for feature selection. Bernoulli, 2012.

Xi Zhou, Kai Yu, Tong Zhang, and Thomas Huang. Image classification using super-vector coding
of local image descriptors. In ECCV’10, 2010.
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